Everything we know in sub-atomic physics is obtained from scattering exps.

11.1.1 Classical Scattering

\[b = \text{"impact parameter [meters"]} \]

\[\theta = \text{scattering angle} \]

\[\text{Hard sphere radius } R \quad \lambda = \text{incidence angle} \]

\[\sin[\theta - \phi] = \sin \alpha \cos B - \sin B \cos \phi \]

\[b = R \sin \left[\frac{\pi}{2} - \frac{\theta}{2} \right] \]

\[= R \left[\sin \frac{\pi}{2} \cos \frac{\theta}{2} - \sin \frac{\theta}{2} \cos \frac{\pi}{2} \right] = R \cos \frac{\theta}{2} = \delta \]
NOTE NO SCATTERING $b > R$ A MISS.

$\Rightarrow \quad \Theta = \begin{cases}
2 \cos \left[\frac{b}{R} \right] & ; \quad b \leq R \\
0 & ; \quad b > R
\end{cases}

\begin{array}{c}
b = 0 \Rightarrow \quad \Theta = 2 \cos \left[\theta \right] = 2 \cdot \pi \rightarrow 180^\circ \text{ REVERSAL DIRECT HIT!}.
\end{array}

\begin{array}{c}
b = R \Rightarrow \quad \Theta = 2 \cos \left[1 \right] = 2.0 = 0 \sim 0^\circ \text{ NEAR MISS!}
\end{array}

What b gives $\Theta = 90^\circ$?

$90^\circ \Rightarrow \quad \frac{\pi}{2} = 2 \cos \left[\frac{1}{R} \right]$

$\Rightarrow \quad \frac{\pi}{4} = \cos \left[\frac{b}{R} \right]$

$\Rightarrow \quad \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} = \frac{b}{R}$

$\Rightarrow \quad b = \frac{\sqrt{2}}{2} \cdot R \quad R < R$

$\begin{array}{c}
b = \frac{\sqrt{2}}{2} R \quad [\text{Diagram}]
\end{array}$
We are typically interested in a beam of incident particles with a spread of impact parameters and corresponding spread of scattering θ.~

Looking down the beam:

Treat differential patch of area ring:

\[
\frac{d\varphi}{b} = \int_{\theta}^{\theta + d\varphi} b \, db \, d\varphi
\]

Area of ring = $[m^2]$ area

\[
\int = \text{flux of incoming particles} = \frac{\# \text{particles}}{[s] \cdot [m^2]}
\]

\[
\int \cdot d\varphi = \frac{\# \text{parts}}{[s]} \text{ passing through ring}
\]
The particles in ring will scatter into curved ring of solid angle.
\[d\Omega \equiv \text{ring} \, d\theta \, d\phi \]

\(d\Omega \) is "surface area" of red curved ring. This is what is measured in lab.

Particles scattered into \(d\Omega \).

Goal: find relation between in \(\Rightarrow d\omega \rightarrow d\Omega = \text{out} \)

\[d\omega = D(\theta) \, d\Omega \]

\[\frac{d\omega}{d\Omega} = D(\theta) \Rightarrow \]

Differential scattering cross section

Since units:
\[[d\sigma] = [m^2] \]
\[[d\Omega] = [1] \]
\[[D(\theta)] = [m^2] = \text{Area} \]
\(\frac{d\sigma}{d\omega} = b d\theta d\phi \)

and \(d\omega = \sin \theta d\theta d\phi \)

\[D(\theta) = \frac{\frac{d\sigma}{d\omega}}{\sin \theta d\theta d\phi} = \frac{b d\theta}{\sin \theta} \frac{d\phi}{d\theta} = \frac{b}{\sin \theta} \frac{d\phi}{d\theta} \]

Note that if the scattering potential is spherically symmetric, then \(d\phi \to \pi \)

\(d\sigma = 2\pi b d\theta d\phi \)

\(d\omega = 2\pi \sin \theta d\theta d\phi \)

We have entire incoming ring scattered into entire outgoing ring.

\[11.2 \text{ Hard sphere} \]

\(b = R \cos \theta / 2 \)

\[\left| \frac{db}{d\theta} \right| = \left| -\frac{1}{2} R \sin \theta / 2 \right| = \frac{R}{2} \left| \sin \theta / 2 \right| \]

\[D(\theta) = \frac{b}{\sin \theta} \left| \frac{db}{d\theta} \right| = \frac{R \cos \theta / 2}{\sin \theta} \frac{R}{2} \left| \sin \theta / 2 \right| \]

But \(\sin 2\theta \equiv 2 \sin \theta \cos \theta \)

Take \(L4 = \theta \)

\[D(\theta) = \frac{R^2}{2} \]

Independent of \(\theta \) for hard sphere!

Units of area, independent of \(b \)!
THINK OF THIS AS "PROBABILITY" THAT ALL PARTICLES IN INCOMING RING \(\Delta \Omega \) ARE SCATTERED INTO OUTGOING RING \(\Delta \Omega \)

\[
\Delta 11.7 \\
\Delta = S d\Omega \ D(e) = S d\Omega \ [d\tau \over d\tau]
\]

IS THE TOTAL CROSS-SECTION!

11.2 FOR HARD SPHERE

\[
\Delta = S D(e) \ d\Omega
\]

\[
= \frac{R^2}{4} S d\Omega
\]

\[
= \frac{R^2}{4} 4\pi
\]

\[
= \pi R^2
\]

THIS IS CROSS SECTIONAL AREA OF SPHERE LIKE "SHADOW"

ALL INCOMING PARTS IN SHADOW \(\pi R^2 \) ARE SCATTERED OUT OF BEAM
Typically the particle flux or current density

\[\frac{1}{J} = \frac{\text{# particles}}{(s^2)[m^2]} \]

Is a vector to be integrated over the area of the inc. beam.

\[I = S \cdot dA \cdot \overrightarrow{J} \]

If \(J \) is a constant and \(I \) to area

\[I = S \cdot \overrightarrow{dA} \cdot \overrightarrow{J} = A \cdot \overrightarrow{J} \]

In this case \(\overrightarrow{J} = \overrightarrow{L} = \text{luminosity} \)

\[\overrightarrow{L} = \frac{\text{#}}{(s^2)[m^2]} \]

Hence the \# particles passing through \(d\sigma \) per sec.

\[d\sigma \rightarrow dN \]

\[dN = \overrightarrow{L} \cdot d\sigma = \overrightarrow{L} (d\theta) d\Omega \]

\[\left[\frac{\#}{s} \right] = \left[\frac{\#}{m^2 s} \right] \]

\[D(\theta) = \frac{1}{\overrightarrow{L}} \frac{dN}{d\Omega} \]

If \(\overrightarrow{J} = \overrightarrow{J}(r, \theta) \) need to integrate instead.
Around 1900, Rutherford shot α particles from radioactive source at gold sheet 1 atom thick.

In 1900, two competing models of the atom:

- Jellium Model
 - Uniform + CHG.
 - Distribution with like + "jelly" with electrons stuck in like paisins
 - J.J. Thompson's model

- Orbital Model
 - + CHG at center
 - Electrons orbiting "smoralwitz" model

Orbital model had been rejected in 1900's since electron orbiting nucleus would be accelerating and radiate away energy and crash into nucleus in about 1 ns.

Jelly little scatter

Lots of scatter
Rutherford found some x's bounced straight back at $\theta = 180^\circ$.

Impossible with jelly model.

So he resurrected orbital model (and proved it) winning Nobel prize.

Bohr stabilized orbit using quantization rule (Bohr's model).

Setup an incident & charge $q_1 = +ze$ and incident KE $T = \frac{1}{2}mv^2 = E$

Scatters off heavy, stationary, nucleous treated as point charge $q_2 = +79e$

For gold, only Coulomb interaction allowed.

\[\text{Job is to find } D(\theta) \text{ what Rutherford measured in lab!} \]

From orbital mechanics we know

\[\text{orbit is a hyperbola } \Rightarrow E_{\text{tot}} > 0 \]

Unbound orbit $\mathbf{r}(t) = \mathbf{r}(t) \hat{\mathbf{r}}$

The inst. velocity is $\mathbf{v}(t) = \dot{\mathbf{r}}(t) \hat{\mathbf{r}} + \dot{\mathbf{\xi}}(t) \hat{\mathbf{\xi}}$

Radial orbital tangential
\[1 \vec{v}^2 = \vec{v} \cdot \vec{v} = \vec{r}^2 + (\vec{r} \cdot \vec{\omega})^2 = \vec{r}^2 + \vec{r} \cdot \vec{\omega}^2 \]

\[T = \frac{1}{2} m |\vec{v}|^2 = \frac{1}{2} m \left[\vec{r}^2 + \vec{r} \cdot \vec{\omega}^2 \right] \]

Since Coulomb PE = \(V = k_0 \frac{Q \cdot Q}{r} \)

\[k_0 = \frac{1}{4 \pi \varepsilon_0} \]

\[E = T + V = \frac{1}{2} m \left[\vec{r}^2 + \vec{r} \cdot \vec{\omega}^2 \right] + V = \text{const} \]

This is constant due to cons. E & R.

Now if momentum is \(\vec{l} = m \vec{r} \times \vec{v} \)

\[= m [\vec{r} \times \vec{\omega}] \times [\vec{r} + \vec{r} \times \vec{\omega}] \]

\[|\vec{l} \times \vec{\omega}| = 1 \]

\[\vec{l} = 1 \vec{\omega} = m \vec{r}^2 \vec{\omega} = \text{const.} \]

\[\vec{\omega} = \frac{\vec{l}}{mr^2} \]

\[\frac{2}{m} \left[E - V \right] = \vec{r}^2 + \vec{r} \cdot \vec{\omega}^2 \]

\[= \vec{r}^2 + \vec{r} \left[\frac{L^2}{m^2 r^4} \right] \]

\[\frac{2}{m} \left[E - V \right] = \vec{r}^2 + \frac{L^2}{m^2 r^2} \]

\(r \) is parameterized in t but we want \(r \) in terms of angle \(\alpha \)

Define \(u = \frac{1}{r} \)
\[\dot{r} = \frac{dr}{dt} = \frac{dr}{du} \cdot \frac{du}{dx} \cdot \frac{dx}{dt} \]

Since \(r = \frac{1}{u} = u^{-1} \)

\[\frac{dr}{dt} = -u^{-2} = -\frac{1}{u^2} \]

Recall \(\frac{dx}{dt} = \dot{x} = \frac{L}{m r^2} \)

\[\Rightarrow \dot{r} = \left[-\frac{1}{u^2} \right] \left[\frac{du}{dx} \right] \left[\frac{L}{m r^2} \right] \]

\[= \left[-\frac{1}{u^2} \right] \left[\frac{du}{dx} \right] \left[\frac{L x}{m} \right] \]

\[\Rightarrow \dot{r} = -\frac{L}{m} \frac{du}{dx} \]

Plug back into \(\dot{r} \)

\[\frac{2}{m} \left[E - V \right] = \frac{\dot{r}^2}{r^2} + \frac{L^2}{m r^2} \]

\[= \frac{L^2}{m^2} \left(\frac{du}{dx} \right)^2 + \frac{L^2 u^2}{m^2} \]

\[\Rightarrow \left(\frac{du}{dx} \right)^2 = \frac{2m}{L^2} \left(E - V \right) - u^2 \]

\[\Rightarrow \frac{du}{dx} = \sqrt{\frac{2m}{L^2} \left(E - V \right) - u^2} \]

\[\Rightarrow dx = \frac{du}{\sqrt{\frac{2m}{L^2} \left(E - V \right) - u^2}} = \sqrt{\frac{2m}{L^2} \left(E - V \right) - u^2} \]

\[\therefore I(u) = \frac{2m}{L^2} \left(E - V \right) - u^2 \]
can't integrate yet since \(E \) and \(V \) depend on \(u \)!

It is \(t = 0 \Rightarrow r = \infty \), \(u = \frac{1}{r} = 0 \), \(\alpha = 0 \)

Let \(R_0 \) be point of closest approach.

\(r = \infty \)
\(u = 0 \)
\(\alpha = 0 \)

\(\Rightarrow \) \(u_0 = \frac{1}{R_0} = \text{const.} \)

At this point \(\alpha = \alpha_0 = \text{const.} \)

By symmetry same angle out

\(\Rightarrow \)

\(\alpha_0 + \alpha_0 + \theta = \frac{\pi}{2} \)

\(\Rightarrow \)

\(\theta = \pi - 2\alpha_0 = \text{const.} \)

From (××)

\[\alpha_0 = \int_{0}^{u_0} \frac{du}{\sqrt{E(u)}} \]

Now need \(I(u) \)

\[I(u) = \frac{2M}{L^2} \left[E - V \right] - u^2 \]

\[= \frac{2M}{L^2} \left[E - k_0 \beta \gamma_2 u \right] - u^2 \]

\[I(u) = \frac{2ME}{L^2} - \frac{2Mk_0 \beta \gamma_2 u}{L^2} - u^2 \]

\[\Rightarrow \]

\[(u_2 - u)(u - u_1) \]

where \(u_1 \) and \(u_2 \) are \(I \)'s two roots.
\[\frac{du}{dx} = \sqrt{I(u)} \]

At point of closest approach \(u_0 \), \(u \) is not changing with \(x \)!

\[\frac{du}{dx} \bigg|_{x=x_0} = 0 = \sqrt{I(u)} \approx \sqrt{I(u_0)} \]

\(\Rightarrow \ u_1, u_2, u_3 \text{ must be } u_0 \text{ the root!} \)

WLOG take \(u_2 > u_1 \) and \(u_0 = u_2 \)

\(\Rightarrow \ \theta = \pi - 2 \theta_0 \)

\[\theta = \pi - 2 \int_0^{u_2} \frac{du}{\sqrt{(u_2-u)(u-u_1)}} \]

\[\Rightarrow \ \theta = \pi + 2 \arcsin \left[\frac{-u_2 + u_1 + u_2}{u_2 - u_1} \right] \bigg|_0^{u_2} \]

\[\theta = -2 \arcsin \left[\frac{u_1 + u_2}{u_2 - u_1} \right] \]

XXX so we now need to find root \(u_1, u_2 \) Q. Formula!

Now since \(E, L \) are const at \(t = -\infty \)

\[\begin{align*} b &\rightarrow v_0^2 \\
|L| &= \left| m \frac{v_0}{b} \right| \Rightarrow m v_0 b \\
E &= \frac{1}{2} m v_0^2 \\
\Rightarrow \text{ initial velocity} \\
\text{combine to get (eliminate } v_0) \quad \frac{L^2}{2} &= 2 m b^2 E \Rightarrow \frac{2m}{L^2} = \frac{1}{b^2 E} \end{align*} \]
Recall \[I(u) = \frac{2ME}{L^2} - \frac{2M}{L^2} k_0 \beta_0 \gamma \left(u - u^2 \right) \]

\[\Rightarrow I(u) = \frac{1}{b^2} - \frac{1}{b^2} \left(\frac{k_0 \beta_0 \gamma}{E} \right) u - u^2 \]

\[= \frac{1}{b^2} - \frac{\rho_0}{b^2} u - u^2 \]

\[= \left[\frac{1}{b^2} \right] - \left[\frac{1}{b^2} \gamma \right] - \left[\frac{1}{b^2} \right]^2 \]

or \[-I(u) = u^2 + \frac{\rho_0}{b^2} u - \frac{1}{b^2} = 0 \]

Roots of \(I(u) \) are roots of \(-I(u) \)

Plug into Quad formula \(A = 1 \)

\[B = \frac{\rho_0}{b^2} \]

\[C = -\frac{1}{b^2} \]

\[u_{\pm} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \]

\[u_{\pm} = \frac{-\rho_0/b^2 \pm \sqrt{\left(\frac{\rho_0/b^2}\right)^2 - 4 \cdot 1 \cdot \left(-\frac{1}{b^2}\right)}}{2} \]

Take \(u_2 = u_+ \) \(u_1 = u_- \)

\[\Rightarrow \frac{u_1 + u_2}{u_2 - u_1} = \frac{-1}{\sqrt{1 + \left(\frac{2b}{\rho_0}\right)^2}} \]

Plug into \(\Theta \):

\[\Theta = -2 \arcsin \left[\frac{u_1 + u_2}{u_2 - u_1} \right] + 2 \arcsin \left[\frac{1}{\sqrt{1 + \left(\frac{2b}{\rho_0}\right)^2}} \right] \]
\[d = \frac{P_0}{2} \cot \frac{\theta}{2} = \frac{k_0 q_1 q_2}{E} \cot \frac{\theta}{2} \]

\[D(\theta) = \left(\frac{b}{\sin \theta} \right) \left(\frac{\sin \theta}{d \theta} \right) = \frac{b}{\sin \theta} \left(\frac{P_0}{2} \right) \cot \frac{\theta}{2} \left(\frac{1}{2} \csc^2 \frac{\theta}{2} \right) \]

\[= \frac{P_0}{2 \sin \theta} \cot \frac{\theta}{2} \left(\frac{P_0}{2} \right) \frac{1}{2} \frac{1}{\sin^2 \frac{\theta}{2}} \]

\[= \frac{P_0^2}{16} \frac{1}{\sin^4 \theta/2} \frac{\cot \theta/2}{\sin^2 \theta/2} \frac{1}{\sin^2 \theta/2} \]

\[= \frac{P_0^2}{16} \frac{1}{\sin^4 \theta/2} \]

\[= \frac{k_0 q_1 q_2}{16 \pi E_0 E_n \sin^2 \theta/2} \]

\[D(\theta) = \left(\frac{q_1 q_2}{16 \pi E_0 E_n \sin^2 \theta/2} \right) \]

\[\text{Note: As } E \rightarrow \infty, D \rightarrow 0 \text{ little scattering prob if incident particle is too fast.} \]