ATOMS IN STRONG MAGNETIC FIELDS —
A "NEW" AREA OF LABORATORY ATOMIC PHYSICS RESEARCH
WITH IMPLICATIONS FOR ASTROPHYSICS AND SOLID-STATE PHYSICS

R. F. O'Connell
Department of Physics and Astronomy, Louisiana State University
Baton Rouge, Louisiana 70803

We speak of atoms in strong magnetic fields \(B \) when the magnetic forces are comparable to or greater than Coulomb forces. Roughly speaking, this occurs \(^1\) for an isolated hydrogen atom when \(B \) exceeds \(B_0 \) where \(B_0 = \left(\frac{\mu^2 c^3}{K} \right)^{1/2} = 2.35 \times 10^6 \text{G} \), and \(n \) is the principal quantum number. Thus for \(B = B_0 \approx 2.35 \times 10^6 \text{G} \) (which we will take as a typical laboratory field), we are dealing with a strong magnetic field when we consider values of \(n \approx 50 \). This is a "new" area for laboratory atomic physics experiments. Actually, pioneering work in this area, both experimental \(^2\) and theoretical, \(^3\) was carried out as far back as 1939 but, except for some investigations pertaining to solid-state physics, the subject lay dormant for a long time. The recent discovery \(^4\) of strong magnetic fields in pulsars (\(B = 10^{12} \text{G} \)) and some white dwarfs (\(B = 10^6 - 10^8 \text{G} \)) led to a resurgence of interest in strong \(B \) fields. This interest has also been kindled by the work of Garton and Tomkins \(^5\) on the Ba I absorption spectrum in a magnetic field of \(2.4 \times 10^6 \text{G} \). Their measurements extended to as high as \(n = 75 \).

For a theoretical analysis of the Ba I spectrum, we will consider the motion of the valence electron in a magnetic field \(B = B_2 \) and a Coulomb potential \(-Z_{\text{eff}} e/r\). Here \(Z_{\text{eff}} \) is the effective charge seen by the valence electron and its magnitude is actually a function of \(B \) — since the motion of all the electrons is affected by the magnetic field, the outer electrons being affected the most. Now if \(E(Z, B) \) denotes the energy of a hydrogen-like atom of atomic number \(Z \) in a magnetic field \(B \), then it follows \(^6\) rigorously that \(E(Z, B) = Z^2 E_1(B/Z^2) \), where \(B/Z^2 \). This relation enables us to confine our attention to the hydrogen atom.
Since the variational techniques used to obtain the low-lying H-atom levels\(^7\) are not suitable for a consideration of highly excited states, we resort to a modification of the adiabatic approximation.\(^3\) This approach is based on the fact that, when magnetic forces dominate over Coulomb forces, the motion in the x-y plane is very rapid and very weakly dependent on the presence of the Coulomb field while the relatively slow z-motion is determined by a one-dimensional potential, \(V(z)\), which is the average of the Coulomb potential over the very rapid motion in the x-y plane. Now in the absence of a Coulomb field, the energy of a nonrelativistic electron, \(E_m\) say, is given by\(^8\)

\[
E_m = n\hbar \omega ,
\]

where \(\omega\) is the cyclotron frequency, the magnetic quantum number \(n=0,1,2,\ldots\), and the Pauli spin contribution has been included. These levels are actually infinitely degenerate in the sense that \(n=\{n_\rho + (|m|-m+1)/2 + m_s\}\), where \(n_\rho=0,1,2,3,\ldots\), \(m=0,1,\pm2,\ldots\) is the z-component of the angular momentum, and \(m_s=\pm1/2\) denotes the spin quantum number. The corresponding classical radius\(^8\) is \(r_m = (2n B_o / B)^{1/2} a_o\), where \(a_o\) is the Bohr radius. The corresponding wave-function we denote by

\[
\psi_m = (2\pi)^{-1/2} e^{ikz} f(\rho,\phi) .
\]

In the presence of both magnetic and Coulomb fields, we write the energy \(E\) as

\[
E = E_m + E_C ,
\]

where \(E_C\) is the Coulomb field contribution, and the wave-function as

\[
\psi = f(z)F(\rho,\phi) .
\]

Thus

\[
V(z) = -e^2 <F|(\rho^2 + z^2)^{-1/2}|F> ,
\]

and the solution of the one-dimensional Schrödinger equation for a particle in this potential gives us both \(f(z)\) and \(E_C\). In general, this equation must be solved numerically\(^9\) but in certain limits analytic treatments are possible. Since the charge
probability density is sharply peaked at ρ_m we may substitute ρ_m for ρ in Eq. (4). In addition, we note that the confinement of the atom in the z-direction is $-a_o$. Now, for low-lying states in a strong B field ($B \gg B_o$), $\rho_m \ll a_o$ and thus $(\rho_m^2 + z^2)^{-1/2}$ can be approximated by $(\rho_m + z)^{-1}$, which permits an analytic evaluation of E_C, giving the characteristic $\ln^2(\rho_m/a_o)$ behavior of the energy.

However, for highly-excited states in laboratory fields we have the reverse situation i.e. $\rho_m \gg a_o$. For example, for $B = B_L$, we have $\rho_m = 458 n_{1/2} a_o$. Hence we may take $E_C = -(e^2/\rho_m)$. Substituting in Eq. (2), this leads to the result

$$E = \hbar \omega [n - (2n B/B_o)^{-1/2}]$$

(5)

It follows that $\delta E/\delta n = 1.5\hbar \omega$ at $E = 0$, in agreement with the results of Ref. 5 for the σ lines. We hope to present soon a comparison of the analytic result for E_C with numerically calculated values of E_C.

Turning to implications for astrophysics, the effect of strong B fields on the Balmer spectra has been investigated in detail, particularly with a view to deducing the values of B found in magnetic white dwarfs. The energy levels of the two-electron systems, He I and H$^-$, has also been investigated. For small B fields, the singlet even-parity state is the lowest state of He I and the binding decreases with increasing B until we reach $B = 1.7 \times 10^9 G$. Beyond this cross-over point, the lowest energy state is a triplet odd-parity state and the binding energy increases with increasing B. For H$^-$ the behavior is similar except that the cross-over point is at $B = 1.2 \times 10^8 G$ and the system is actually unbound in the intermediate range $1.2 \times 10^8 G < B < 3.3 \times 10^8 G$.

In semiconductors, the Coulomb field is effectively reduced (because of the dielectric constant) whereas the B field is effectively increased (because of the low effective mass). Thus, even for low-lying impurity and exciton levels in a semiconductor in fields $\approx 10^4 G$, it is possible that magnetic forces dominate. In essence we have a
\[z_{\text{eff}} = \left(\frac{\nu_{\text{eff}}}{\nu} \right) \] (6)

where \(\nu, \nu_{\text{eff}} \) and \(\varepsilon \) denote the isolated mass, effective mass and dielectric constant respectively. For In Sb we find\(^{14} \) that
\[z_{\text{eff}} \approx 8.1 \times 10^{-4} \] and that \(B' = B_0 \) for \(B \) as low as \(1.6 \times 10^3 \) G. Utilizing a Debye-Hückel screening potential, we have carried out\(^{14} \) an accurate multiparameter variational calculation of the energy levels, which is valid for all values of \(B \) and screening length.

REFERENCES
