Attractive spin-spin contact interactions in the Einstein-Cartan-Sciama-Kibble
torsion theory of gravitation

R. F. O'Connell

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803
(Received 25 April 1977)

Kerlick has obtained the unexpected result that the spin-spin contact interactions, which are characteristic
of the Einstein-Cartan-Sciama-Kibble theory of gravitation, are attractive for the case of a totally
antisymmetric spin angular momentum density \(\tau_{ij} \), which, in particular, is appropriate for the Dirac field.

Using our previous techniques—where the emphasis is on the use of Lagrangian densities as opposed to
energy-momentum densities—we present a simple and explicit verification of this result.

A characteristic feature of the Einstein-Cartan-Sciama-Kibble (ECKS) theory of gravitation\(^1\) is the
appearance of spin-spin contact (SSC) interactions. In a recent analysis we compared such interac-
tions with contact interactions which arise in a quantum version of Einstein's theory. Our choice
for the spin angular momentum density \(\tau_{ij} \) was

\[
\tau_{ij} = \epsilon_{ijmn} U^m U^n S^m,
\]

which led to a repulsive contribution to the gravitational interaction from the SSC terms in the ECKS
theory. However, we also cautioned\(^2\) that different interactions may arise from the use of spin
densities different from that given in Eq. (1). In fact, Kerlick\(^3\) has shown that the SSC terms for a
Dirac field actually enhance the attractive nature of the gravitational interaction, whereas the op-
posite result (repulsive contribution) is obtained for a semiclassical spinning fluid. This arises
from the fact that \(\tau_{ij} \) is totally antisymmetric for the Dirac field. Now Kerlick's analysis was based
on the use of energy-momentum tensors, which of course were necessary for his discussion of cos-
mological models. Here we point out that, if one's attention is confined to an analysis of the basic
nature of the interaction, the simplest approach is via the use of a Lagrangian density.

As in Ref. 1, our starting point is the non-Riemannian contribution to the total Lagrangian, viz.,

\[
\Delta \mathcal{L} = \hat{k} (-\frac{1}{2} \tau_{ijk} \tau^{ijk} + \tau_{ij} \tau^{ij} + \tau_{ik} \tau^{ik}),
\]

where \(\hat{k} = 8\pi G/c^4 \).

In the case where \(\tau_{ij} \) is totally antisymmetric,

it follows immediately that

\[
\Delta \mathcal{L} = \frac{1}{2} \hat{k} \tau_{ijk} \tau^{ijk}.
\]

As with Kerlick\(^4\) we now write

\[
\tau_{ijk} = \epsilon_{ijk\ell} \tau^\ell,
\]

where

\[
\tau^\ell = \frac{1}{4} \bar{\psi} \gamma_{\ell} \psi.
\]

In the "rest" picture, we can write\(^6\)

\[
\tau^\ell = \frac{1}{4} (\bar{\psi} \gamma^\ell \psi) = \frac{1}{2} S^\ell.
\]

It immediately follows, from Eqs. (3), (4), and (6) that

\[
\Delta \mathcal{L} = \frac{3}{4} \hat{k} S^2.
\]

In other words, the SSC interaction is attractive in the case of a field whose spin angular momen-
tum density is totally antisymmetric. This should be contrasted with the result (\(\Delta \mathcal{L} = -\hat{k} S^2 \))

obtained with the choice of \(\tau_{ij} \) given by Eq. (1).

Comparing \(\Delta \mathcal{L} \) with the corresponding term which occurs in a quantum version of Einstein's
theory, viz., \(\Delta \mathcal{L}^{(1)} \) (see Ref. 1) we obtain

\[
\Delta \mathcal{L}^{(1)} = -\frac{3}{8} \Delta \mathcal{L}.
\]

Thus, the overall contribution of both spin contact terms is to give an attractive gravitational
effect. Of course, repulsive gravitational forces of a different nature\(^1\) are still present.

The author is pleased to acknowledge the stimulation he received to look further into such ques-
tions as the result of a discussion with Professor A. Trautman.

\(^1\) R. F. O'Connell, Phys. Rev. Lett. 37, 1653 (1976); 38, 298(E) (1977) contains relevant references. Also, for
the most part, we use the notation of this paper.

\(^2\) Reference 11 of Ref. 1.

\(^5\) J. J. Sakurai, Advanced Quantum Mechanics (Addison-