Slanted coupling of one-dimensional arrays of small tunnel junctions

G. Y. Hu
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001
and Department of Physics, Cheju National University, Cheju 690-756, Korea

R. F. O’Connell
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001

Jai Yon Ryu
Department of Physics, Cheju National University, Cheju 690-756, Korea

(Received 19 January 1998; accepted for publication 14 September 1998)

We have studied the electrostatic problem of the slanted coupling of two one-dimensional (1D) arrays with equal junction capacitances C, equal stray capacitances C_o, equal coupling capacitances C_c, and with both arrays biased. In the weak coupling limit ($C_c/|C| \ll 1$), we obtain an analytic solution for the potential profile and the corresponding Gibbs free energy, and we derive threshold voltages for various charge transport modes. Our results show that C_o, C_c, and the bias voltage V_1 all play important roles in determining the threshold voltage of the system. In the small stray capacitance limit ($C_o/|C| \ll 1$), the threshold voltage is proportional to $1/|C|$, while in the large stray capacitance limit ($C_o/|C| \gg 1$), the threshold voltage becomes independent of C. Also, in the small $C_c/|C|$ limit, single electron tunneling always has a lower threshold voltage than that of the electron-hole and mixed tunneling. In addition, we find that V_1 has a more dramatic effect on the electron-hole tunneling threshold voltage than on that of the single electron tunneling, i.e., at some favored value of $C_c/|C|$ a small change in V_1 can switch the transport of the system from single electron to electron-hole transport. © 1998 American Institute of Physics.

I. INTRODUCTION

In the study of Coulomb blockade of single electron tunneling, capacitively coupled one-dimensional (1D) arrays of small tunnel junctions have attracted a lot of attention. These systems can be used to study both time correlated and space correlated single electron tunneling, and holds promise for being the basis of a new metrological standard. Nevertheless, as shown in recent experiments, it is exceedingly difficult to keep a single charge state propagating in a 1D array, because of the extreme sensitivity to stray charges. Thus much effort has been made to develop a more sophisticated system of 1D arrays. One promising experimental system consists of two parallel 1D arrays (see Fig. 1), where each electrode of one array is coupled to the electrodes of the other array with one [straight, Fig. 1(a)] or two [slanted, Fig. 1(b)] capacitors C_c. When a single electron is placed on an electrode in the first array, the total energy will be lower if a hole is added (an electron is removed from) a neighboring electrode in the other array. As a result, the electron and the hole (e-h) tend to move together in the arrays resulting in two identical currents of opposite signs in the two arrays. Recently, Delsing et al. have reported that they have observed indications of correlated electron-hole transport. However, in the straight coupling case, the low energy state can be conserved only if the e-h tunnels simultaneously, which is a second-order cotunneling process and a less likely event. It was noted by Delsing et al. that the slanted coupling is a better choice where the low energy e-h state can be preserved even for sequential tunneling (so that we are still dealing with a lowest order process), and it is very important to understand the system theoretically. Nevertheless, to date theoretical investigations have dealt mainly with the case of straight coupling and zero bias on one of the arrays. Here, we study the electrostatic problem of the slanted coupled two 1D arrays, and investigate the charge profiles and threshold voltages of various charge solitons. In particular, we show that the electrostatic problem can be solved in the weak coupling limit, and we give a quantitative analysis for the case when both arrays are biased. In Sec. II, we present the general formalism underlying our method and investigate the charge profiles and threshold voltages of various charge solitons. Our results are summarized in Sec. III.

II. FORMULATION

The system with which we are concerned is illustrated in Fig. 1(b), where two 1D arrays each with m small tunnel junctions, with equal junction capacitances C and equal stray capacitances C_o, are doubly coupled to each other by the coupling capacitance C_c. Specifically, the ith island of the first array is coupled through C_c to both the $(i-1)$th and ith island of the second array. The bias potentials of the two edges of the upper (first) array are, respectively, Φ_0 and Φ_m, while that of the lower (second) array are φ_0 and φ_m. Also, the tunnel resistance R of each junction is assumed to be the same and $R \gg \hbar/e^2$, which ensures that the wave function of an excess electron on an island is localized there. We denote

aElectronic mail: rfoc@rouge.phys.lsu.edu
the potential on each of the individual \(m-1 \) islands of the first and the second array by the column vectors \(\Phi = \{\Phi_1, \Phi_2, \ldots, \Phi_{m-1}\}^T \) and \(\bar{\varphi} = \{\varphi_1, \varphi_2, \ldots, \varphi_{m-1}\}^T \), respectively. In addition, the number of excess electrons on each of the individual \(m-1 \) islands of the first and second array is denoted by the column vectors \(\bar{N} = \{N_1, N_2, \ldots, N_{m-1}\}^T \) and \(\bar{n} = \{n_1, n_2, \ldots, n_{m-1}\}^T \), respectively.

In general, the Gibbs free energy for the biased double-coupled two 1D arrays contains two terms, the electrostatic energy \(E_S \) and the work done due to the charge redistribution associated with the change of the charge profile \(\{\bar{N}, \bar{n}\} \) on the islands, which can be written as

\[
F = E_S + W,
\]

where the work done due to the charge redistribution associated with the change of the charge profile \(\{\bar{N}, \bar{n}\} \) is given by

\[
W = -\sum_{j=1}^{m-1} \left[\Phi_j(Q_j^f + Q_j^c) + \varphi_j(q_j^f - Q_j^c) \right] - \sum_{j=1}^{m-1} \left[\Phi_j Q_{j1}^f - \varphi_j Q_{j1}^c + V_j q_j^f + V_j q_j \right],
\]

where \((Q_j^f, Q_j^c, q_j^f, q_j) \) are the charges on the stray capacitor, the coupling capacitor, and the tunneling junction, respectively. In particular, one has \(Q_{j1}^c = C_c(\Phi_j - \varphi_j) \), and \(Q_{j1}^f = C_c(\Phi_j - \varphi_{j-1}) \). Also, the local voltage for the upper array is \(V_j = \Phi_{j-1} - \Phi_j \), with \(\Phi_0 = V \), and that of the lower array is \(v_j = \varphi_{j-1} - \varphi_j \), with \(\varphi_0 = U \). In addition, the electrostatic energy in Eq. (1) is defined as

\[
E_S = E_1 + E_2 + E_{12} - e \sum_{i=0}^{m} (N_i \Phi_i + n_i \varphi_i),
\]

representing the charging energy for the first array, the second array, and the coupling between the two arrays, respectively. We note that the use of Eq. (1) has at least two advantages. First, the important process of inner junction charge transfer, i.e., charge transfer between two neighboring islands without any other transfer on the other islands, can now be studied in detail. The other advantage is that it is now possible to obtain the electrostatic equations for the system directly from Eq. (1), which we discuss in the following.

Our goal here is to find out an explicit form of Eq. (1) at the fixed potential profile \(\{\bar{\Phi}, \bar{\varphi}\} \) and changeable island charge number \(\{\bar{N}, \bar{n}\} \). For this purpose, we take the derivative of Eq. (1) with respect to the potentials \(\Phi_i \) and \(\varphi_i \) (\(i = 1, 2, \ldots, m-1 \)), after which we get \(2(m-1) \) equilibrium conditions. These equilibrium conditions form \(2(m-1) \) linear equations for the potential profile \(\{\bar{\Phi}, \bar{\varphi}\} \) and the island charge number \(\{\bar{N}, \bar{n}\} \), and they can be conveniently put into a simple matrix form (see Appendix)

\[
\begin{pmatrix} \tilde{M}_+ & \alpha \tilde{Y} \\ -\alpha \tilde{Y} & \tilde{M}_- \end{pmatrix} \begin{pmatrix} \bar{\Phi} \\ \bar{\varphi} \end{pmatrix} = \frac{e}{C} \begin{pmatrix} \bar{N} + \bar{n} \\ \bar{N} - \bar{n} \end{pmatrix},
\]

where the coupling constant \(\alpha = C_c/C \), and we have used a double bar to denote the \(m-1 \) by \(m-1 \) tridiagonal matrices \(\tilde{M}_+ \) and \(\tilde{M}_- \). Specifically, \(\tilde{M}_+ \) is a symmetrical tridiagonal matrix having the same diagonal elements \(D_+ = -2 - C_o/C - 2\alpha \pm \alpha \), and the same off-diagonal elements \(1 \pm \alpha \), while \(\tilde{Y} \) is an antisymmetrical tridiagonal matrix having the same diagonal elements 0, and the same off-diagonal elements 1/2.

In addition, the first and last elements of \(\bar{N} \) and \(\bar{n} \) in Eq. (7) are understood to be \(N_1 - C\Phi_0/e \) and \(N_{m-1} - C\Phi_m/e \), \(n_1 = -C\varphi_0/e \) and \(n_{m-1} = -C\varphi_m/e \), respectively, to accommodate the effects of the bias voltages. Our formalism is quite general. In the case of a symmetric bias voltage, we have \(\Phi_0 = V/2 \), \(\varphi_0 = -V/2 \), and \(\varphi_0 = \varphi_m = 0 \). For the experiments of Ref. 4, where both arrays are biased, one has \(\Phi_0 = V_1 \), \(\varphi_0 = -V_2 \), and \(\Phi_m = \varphi_m \). We note that Eq. (7) is also known as the electrostatic equation for the system, the 1D version of which has been obtained by the consideration of the charge conservation law.\(^4\)

It is straightforward to show that the off-diagonal block matrix \(\alpha \tilde{Y} \) in Eq. (7) will contribute to the problem only to order \(\alpha^2 \). Thus, in the weak coupling (\(\alpha \ll 1 \)) region, it is justified to neglect the off-diagonal block matrix \(\alpha \tilde{Y} \) and, as a result, Eq. (7) can be solved analytically. By an extension of the techniques used in Ref. 4, for matrix inversion of a symmetric tridiagonal matrix, we obtain a solution of Eq. (7) in the weak coupling region as

\[
E_1 = \frac{C_c}{2} \sum_{j=1}^{m-1} \Phi_j^2 + \frac{C_c}{2} \sum_{j=1}^{m} (\Phi_j - \Phi_{j-1})^2,
\]

\[
E_2 = \frac{C_c}{2} \sum_{j=1}^{m-1} \varphi_j^2 + \frac{C_c}{2} \sum_{j=1}^{m} (\varphi_j - \varphi_{j-1})^2,
\]

\[
E_{12} = \frac{C_c}{2} \sum_{j=1}^{m-1} (\Phi_j - \varphi_j)^2 + \sum_{j=1}^{m} (\Phi_j - \varphi_{j-1})^2.
\]
\[
\left(\Phi, \bar{\varphi} \right) = - \frac{e}{C} \left[\tilde{A}^T \tilde{B} - \tilde{A} \tilde{B}^T \right] \left(\tilde{N}, \bar{\tilde{N}} \right),
\]
(8)

where the elements of the symmetric matrix \(\tilde{A}^T\) and \(\tilde{B}\) are given by, respectively,

\[
A_{ij} = \frac{1}{2} \left[R_{ij}(\lambda_+^\prime) + R_{ij}(\lambda_-^\prime) \right],
\]
(9)

\[
B_{ij} = \frac{1}{2} \left[R_{ij}(\lambda_+^\prime) - R_{ij}(\lambda_-^\prime) \right],
\]
(10)

with \(\lambda_+^\prime\) defined by

\[
-2 \kappa h \lambda_+^\prime = D \pm \alpha/2.
\]

Also, \(\alpha\) is the same as in Eq. (7), \(D = -2 - C_\alpha/C - 2\alpha\), and

\[
R_{ij}(\lambda_-^\prime) = \frac{\kappa(hm-|j-i|)\lambda_-^\prime - \kappa(hm-i-j)\lambda_-^\prime}{2sh\lambda_-^\prime + shm\lambda_-^\prime}.
\]

(12)

We note that in Eqs. (9)–(12), one can check that in general \(\lambda_+^\prime < \lambda_-^\prime\) and \(R_{ij}(\lambda_-^\prime) > R_{ij}(\lambda_+^\prime) > 0\), so that \(A_{ij} > B_{ij} > 0\). In the \(\alpha \to 0\) limit, \(B_{ij}\) tends to zero \((\lambda_+^\prime \to \lambda_-^\prime)\) and the two arrays become decoupled. Also, Eq. (8) can be explicitly written as

\[
\phi_j = \phi_j^0 + (A_{1j} + \delta_{0j}) \phi_0 + (A_{ij, m-1} + \delta_{im}) \phi_m + B_{ij} \varphi_0
\]

\[+B_{ij} \phi_{m-1} \varphi_m,\]

(13)

\[
\phi_j = \phi_j^0 + (A_{1j} + \delta_{0j}) \phi_0 + (A_{ij, m-1} + \delta_{im}) \phi_m + B_{ij} \phi_0
\]

\[+B_{ij} \phi_{m-1} \phi_m,\]

(14)

where the bias independent terms in Eqs. (13) and (14) are defined, respectively, as

\[
\phi_j^0 = - \frac{e}{C} \sum_{j=1}^{m} \left(A_{ij} \phi_j + B_{ij} \phi_n \right),
\]

(15)

\[
\phi_j^0 = - \frac{e}{C} \sum_{j=1}^{m} \left(B_{ij} \phi_j + A_{ij} \phi_n \right).
\]

(16)

We note that in writing Eqs. (13) and (14), we have added Kronecker delta \((\delta)\) terms to ensure that the equations are correct for \(i=0,1,...,m\) (recall in Eq. (8) that \(i=1,2,...,m-1\)).

Equation (8), supplemented by Eqs. (9)–(11), is a key result of this article. Once a charge profile \(\{\tilde{N}, \bar{\tilde{N}}\}\) is known, we can use Eq. (8) to determine the potential profile \(\{\Phi, \bar{\varphi}\}\). Before pursuing this subject, let us analyze our result of Eq. (8) for the simplest case, where no net charge exists in any of the island (\(N_j = n_j = 0\)) and the arrays act like a network of capacitors, and where one can easily check the results. In this case, at the bias voltage \(\Phi_0 = V\) and \(\Phi_m = \varphi_0 = \varphi_m = 0\), Eq. (8) reduces to,

\[
\phi_j = (A_{1j} + \delta_{0j}) V,
\]

(17)

\[
\phi_j = B_{ij} V.
\]

(18)

Two limiting cases of Eqs. (17) and (18) are of particular interest. First, when \(C_\alpha \to 0\), one finds \(B_{ij} \to 0\), and \(\varphi_j \to 0\). If one also has \(C_\alpha \to 0\) then \(\Phi_j \to V(1 - j/m)\), and all the junctions have the same voltage \(V/m\).

Next, we use Eqs. (7) and (8) to evaluate Eq. (1) exactly, and the result is

\[
F = E_0 + \frac{e^2}{2C} \sum_{i,j=1}^{m-1} \left[N_i A_{ij} N_j + n_i A_{ij} n_j + n_i B_{ij} N_j \right]
\]

\[+ N_i B_{ij} n_j \right] - \phi_0 Q_0 - \phi_m Q_m - \phi_0 q_0 - \phi_m q_m.
\]

(19)

where \(E_0\) is a quantity independent of the charge profile \(\{\tilde{N}, \bar{\tilde{N}}\}\), and

\[
Q_0 = N_0 e + C(\phi_0 - \phi_1), \quad Q_m = N_m e + C(\phi_m - \phi_{m-1}),
\]

(20a)

\[
q_0 = n_0 e + C(\varphi_0 - \varphi_1), \quad q_m = n_m e + C(\varphi_m - \varphi_{m-1})
\]

(20b)

Equation (19) is a general expression for the Gibbs free energy \(F\) of double-coupled two 1D arrays with changeable charge \(e\{\tilde{N}, \bar{\tilde{N}}\}\) on the islands, at the fixed bias voltage \(\{\Phi_0, \Phi_m, \varphi_0, \varphi_m\}\) and the fixed potential profile \(\{\tilde{N}, \bar{\tilde{N}}\}\) on the islands. By means of Eq. (19), one can directly determine the change of \(\Delta F\) due to some charge transfer event. To be definite, here we discuss the case \(\{N_k, \bar{N}_k, n_k, n_k\}\) to \(\{N'_k, N'_k, n_k, n_k\}\), i.e., the charge transfer between two islands \(k\) and \(k'\), while the charges on the other islands are unchanged. We denote the net transferred charge as \(Q (\Phi)\) that can be electron-hole, single electron, or the combined electron-hole and single electron case, which will be discussed later). Thus, we obtain from Eq. (19) the \(\Delta F(Q, k, k')\) due to the charge transfer \(\{N_k, \bar{N}_k, n_k, n_k\}\) to \(\{N'_k, N'_k, n_k, n_k\}\),

\[
\Delta F(Q, k, k') = F(\{N', n'\}) - F(\{N, n\})
\]

\[= \Delta E(Q, k, k') + W(Q, k, k'),
\]

(21)

where the detailed form of the change of the charging energy \(\Delta E(Q, k, k')\) and the work done \(W(Q, k, k')\) in Eq. (21) can directly be worked out from Eq. (19).

One can now determine the tunneling threshold voltage by means of Eq. (21). At \(T=0\), the tunneling of charge \(Q\) from the \(k\) to the \(k'\) island (restricting our discussion to the case of \(k'=k\pm1\)) is energy favorable when \(\Delta E(Q, k, k')\) of Eq. (21) is less than zero. Thus, the threshold energy \(V_t\) for the injection of a charge from the \(k\)th island onto the neighboring \(k'\) island can be obtained by equating \(\Delta E(Q, k, k') = 0\). Here we study three cases of particular interest: (i) the electron-hole pair \((e-h)\) case, where an electron is transferred in the upper array from the \(k\) island to the \(k'\) island, and at the same time in the lower array an electron from the \(k'\) island to the \(k\) island is transferred, i.e., \(N'_k - N_k = 1, n'_k - n_k = -1, N''_k - N_k = 1, n''_k - n_k = 1\); (ii) the single charge \((e)\) case, where an electron is transferred from the \(k\) island to the \(k'\) island in the upper array, i.e., \(N'_k - N_k = 1, n'_k - n_k = 0, N''_k - N_k = -1, n''_k - n_k = 0\); (iii) the combined \((e-h)\) case, where, in addition to (i) a single electron is transferred from \(k\) to \(k'\), with the results \(N'_k - N_k = 1, n'_k - n_k = -1, N''_k - N_k = 1, n''_k - n_k = 1\). It turns out that the final form of \(V_t\) depends on the setup of the bias voltage. In the case of both arrays biased with \(\Phi_0 = V_1, \varphi_0 = -V_2, \) and \(\Phi_m = \varphi_m = 0\), we obtain from Eqs. (19) and (21).

where \(A'_j \), \(B'_j \), and \(R'_j \) are defined by Eqs. (8)–(11), respectively. Equations (22a)–(22c) are interesting results. First, by using them one immediately finds that \(dV_t/dm > 0 \) and \(dV_t/dk < 0 \). This implies two facts: (i) for fixed values of \(C \), \(C_o \), and \(C_e \), an array of larger \(m \) will generally have larger \(V_t \); (ii) once a charge is injected into the array, it will have no difficulty in traveling through (with increasing \(k \)) the array. This is to say that from Eq. (22) one can directly check that \(V_t^Q(0,1) > V_t^Q(1,2) \) so that the actual threshold voltage value of the system is \(V_t^Q = V_t^Q(0,1) \). Thus, the threshold energy \(V_t \) for the injection of a single charge can be deduced from Eq. (22) as

\[
V_t^{-h} = V_2^{-h}(0,1) = \frac{e}{C} \left(-R'_{1,1} \right) - V_1. \tag{23a}
\]

\[
V_t^0 = V_2(0,1) = \frac{e}{2C} \left(A'_1 - V_1 \right) \left(B'_1 - 1 \right), \tag{23b}
\]

\[
V_t^{-h,e} = \frac{e}{2C} \left(2B'_1 - A'_1 - A'_1 - V_1 - A'_1 + B'_1 \right). \tag{23c}
\]

By using Eqs. (23a)–(23c), we can study the \(C_o \) and \(C_e \) effects, the number \(m \) effect, as well as the bias voltage \(V_1 \) effect, on the threshold voltages for the various tunneling cases.

First, we examine the capacitor’s \((C_o \) and \(C_e \) effects. For simplicity, we set \(V_1 = 0 \) in Eq. (23). It is straightforward to deduce from Eqs. (9)–(12) that \(B_{ij} \) tends to zero, while \(A'_{ij} \) and \(R'_j \) (\(\lambda \)) both approach the same value, \((C_o/C)^{-j-1} \) for \(C_o/C \gg 1 \) and \(i(m-j)/m \) for \(C_o/C \ll 1 \), respectively. It follows that in the case of \(C_o/C \ll 1 \), (23) reduces to

\[
V_t^{-h} = \frac{e}{C} (m-1) - V_1, \tag{24a}
\]

\[
V_t^0 = \frac{e}{2C} (m-1), \tag{24b}
\]

\[
V_t^{-h,e} = \frac{e}{2C} (3m-5) - 2V_1. \tag{24c}
\]

Also, when \(C_o/C \gg 1 \), Eq. (23) reduces to

\[
V_t^{-h} = \frac{e}{C_o} - V_1, \tag{25a}
\]

\[
V_t^{-h,e} = \frac{e}{C_o} - V_1. \tag{25b}
\]

Equations (24) and (25) show that the stray capacitors play an important role in determining the threshold voltage \(V_t \). In the small stray capacitance limit [see Eq. (24)], the threshold voltage is proportional to \(1/C \), while in the large stray capacitance limit, the threshold voltage becomes independent of \(C \). These features of the threshold voltage \(V_t \) are further illustrated in Fig. 2, where we plot \(V_t \) (in units of \(e/C_o \)) vs \(C_o/C \), for \(\alpha = 0 \), 0.1, and 0.2, for a double-coupled two 1D arrays. Also seen from the figure, in the small \(\alpha \) limit single electron tunneling always has a lower threshold voltage than that of the e-h and mixed tunneling.

Next, we study the bias voltage \(V_1 \) effects on the threshold voltages. For this purpose, in Fig. 3 we plot the threshold voltage \(V_2 \) (in units of \(e/C_o \)) for injecting a charge into the first island of a slanted coupled two 1D array, each with ten small junctions and no bias voltage for the other array, as a function of \(C_o/C \), at three different values of \(C_o/C \), at \(0.5, 0.9 \) (from top to bottom). Full curves are for electron-hole pair, dotted curves are for single electron, and dashed curves are for combined electron-hole pair and single electron case. Also, \(C_e \), \(C_o \), and \(C_c \), are the coupling capacitances, junction capacitances, and stray capacitances, respectively.
In summary, in this article we have studied the electrostatic problem of the slanted coupled two 1D arrays, and investigated the charge profiles and threshold voltages of various charge solitons. In particular, in the weak coupling limit we have obtained an analytic solution of Eq. (8) for the potential profile and the corresponding Gibbs free energy of Eq. (19). By means of Eq. (19), we have derived the threshold voltages Eq. (22) for various cases of charge transport in the slanted coupled 1D arrays with both arrays biased. Our results show that the stray capacitance \(C_\alpha \) the coupling capacitor \(C_\perp \), and the bias voltage \(V_1 \) all play important roles in determining the threshold voltage of the system. In the small stray capacitance limit [see Eq. (24)], the threshold voltage is proportional to \(1/C \), while in the large stray capacitance limit, the threshold voltage becomes independent of \(C \). Also, in the small \(\alpha \) limit, single electron tunneling always has a lower threshold voltage than that of the e-h mixed tunneling cases. For the effects of bias voltage \(V_1 \), we find that it has a more dramatic effect on the e-h tunneling threshold voltage than that of the single electron tunneling, i.e., at some favored value of \(C_\perp /C \) the presence of \(V_1 \) can switch the transport of the system from single electron to electron-hole transport.

ACKNOWLEDGMENTS

The authors would like to thank Dr. P. Delsing for stimulating discussions. The work was supported in part by the U.S. Army Research Office under Grant No. DAAH04-94-G-0333, and in part by the Korea Science and Engineering Foundation (KOSEF).

APPENDIX: DERIVATION OF EQ. (7)

The \(2(m-1) \) equilibrium conditions as deduced from Eq. (1) are

\[
\Phi_{i+1} + \Phi_{i-1} + D\Phi_i + \alpha (\varphi_i + \varphi_{i-1}) = \frac{e}{C} N_i \quad (i=1,2,...,m-1),
\]

\[
\varphi_{i+1} + \varphi_{i-1} + D\varphi_i + \alpha (\Phi_{i+1} + \Phi_{i-1}) = \frac{e}{C} n_i \quad (i=1,2,...,m-1),
\]

where \(D = -2C_g/C - 2\alpha \), and the coupling constant \(\alpha = C_\perp /C \).

Next, we introduce a pair of new variables defined by

\[
S_i = \Phi_i + \varphi_i,
\]

\[
T_i = \Phi_i - \varphi_i,
\]

and use Eqs. (A3) and (A4) to put Eqs. (A1) and (A2) into the following form:

\[
S_{i+1} + S_{i-1} + DS_i + \alpha \left(S_i + \frac{S_{i-1} - T_{i-1}}{2} + \frac{S_{i+1} + T_{i+1}}{2} \right) = \frac{e}{C} (N_i + n_i),
\]

\[
T_{i+1} + T_{i-1} + DT_i + \alpha \left(-T_i + \frac{S_{i-1} - T_{i-1}}{2} - \frac{S_{i+1} + T_{i+1}}{2} \right) = \frac{e}{C} (N_i - n_i).
\]

It is not difficult to see that the matrix form of Eqs. (A5) and (A6) is Eq. (7) of the text.