\[F(k, E) = \int dt \exp iEt \langle [S_z(t), S_z(0)] \rangle \]
\[\lim_{k \to 0} F(k, E) = 0 \]
and therefore eq. (4) contains no relevant information about gapless modes.

The second flaw in the proof is that even if one works with the proper non-trivial spectral functions pertaining to the \(S^+(k)S^-(\mathbf{k}) \) or \(S^+(k)S^+(\mathbf{k}) \) Green function, and arrives at a formula like

\[\lim_{k \to 0} E(k) = \lim_{k \to 0} \langle [H, S^+(k, 0)] S^-(\mathbf{-k}, 0) \rangle, \]

and even though this double commutator is zero at \(k = 0 \), a careful analysis [2] shows that such double commutators do not necessarily approach their \(k = 0 \) value in the limit of zero \(k \).

Such limits are only well behaved if the Hamiltonian contains no excessively long range forces [3].

The proof suggested by Crisan is therefore incorrect. The use of Green function notation does not make unnecessary the analysis found in previous proofs of the theorem.

References

MOTION OF A RELATIVISTIC ELECTRON WITH AN ANOMALOUS MAGNETIC MOMENT IN A CONSTANT MAGNETIC FIELD

R. F. O'CONNELL
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana and Institute for Space Studies, Goddard Space Flight Center, NASA, New York, New York

Received 4 July 1968

The anomalous magnetic moment of the electron is accounted for by adding a phenomenological Pauli term to the Dirac equation. The resultant eigenvalues are applied to (a) the non-linear Lagrangian of the E-M field and (b) spontaneous pair production.

The Dirac equation for an electron of mass \(m \) with an anomalous magnetic moment, \(\mu \) say, in a constant homogeneous magnetic field \(H \) (directed along the \(z \) axis, say) takes the form [1,2] (in our units \(c = \hbar = 1 \) and \(\alpha = e^2 = 1/137 \))

\[i \frac{\partial \psi}{\partial t} = \left\{ \alpha \cdot (P + eA) + \gamma_4 m + \mu \gamma_4 \Sigma \cdot H \right\} \]
where the term containing \(\mu \) (the so-called Pauli anomalous interaction term) is an addition to the usual Dirac Hamiltonian. Since different values for the energy eigenvalues derived from this equation appear in the literature [1,2], we have re-derived the result in a conventional manner, and we find, in agreement with ref. 2, that the energy eigenvalues \(E \) are given by

\[E = \pm \left\{ p_z^2 + \frac{m^2}{H_C} \left(2n + \xi + 1 \right) \right\}^{1/2} + \frac{\mu H}{2} \]

where \(n = 0, 1, 2, \ldots \) is the principal quantum number, \(\xi = \pm 1 \) refers to spin up and spin down, \(p_z \) is the momentum of the particle along the \(z \) axis and \(H_C = m^2/e = 4.4 \times 10^{13} \) gauss. For our purposes it is sufficient to take \(\mu = (\alpha/2\pi) \mu_B \) where \(\mu_B \) is the Bohr magneton and so we can write

\[E = \pm \left\{ p_z^2 + m^2 \left(1 + \frac{H}{H_C} \left(2n + \xi + 1 \right) \right)^{1/2} + \frac{\alpha}{4\pi} \frac{H}{H_C} \right\}^{1/2} \]

Let us now consider applications of eq. (3).

(a) An exact expression for the non-linear Lagrangian of the electromagnetic field has been derived [3,4] in the case where \(\mu = 0 \) (i.e. neglect of the anomalous magnetic moment). Using the more general eigenvalue given by eq. (3) we have...
derived an additional non-linear correction, L_2 say, to the Lagrangian of the magnetic field (the electric field will be considered later) as follows ($H^* = H/H_C$)

$$L_2 = \frac{m^2}{32\pi^2} \left(\frac{a}{2\pi} \right)^2 \frac{H^*}{H_C^2} \times$$

$$\times \int_0^{\infty} \frac{d\eta}{\eta^2} \exp(-\eta) \left\{ \eta H^* \coth(\eta H^*) - 1 \right\}$$

In the weak and strong field limits we find

$$L_2 = \frac{m^4}{96\pi^2} \left(\frac{a}{2\pi} \right)^2 H^*^4 \quad \text{for } H^* \ll 1 \quad (5)$$

$$L_2 = \frac{m^4}{32\pi^2} \left(\frac{a}{2\pi} \right)^2 H^*^2 \ln(H/H_C) \quad \text{for } H^* \gg 1 \quad (6)$$

(b) It will be noticed from eq. (3) that, for values $\rho_z = 0$, $n = 0$ and $\xi = -1$, we get a minimum value for $|E|$ given by

$$|E|_{\min} = m \left\{ 1 - \frac{a}{4\pi} H^* \right\}$$

Thus the minimum separation between positive and negative energy states, ΔE say, is $2m(1 - aH^*/4\pi)$ and so we can conclude that, for values of H equal to $4\pi a^{-1}H_C$, the minimum separation is zero and thus spontaneous pair production may occur. This has important astrophysical implications particularly with respect to the expanding universe if a primordial magnetic field [5] exists. A detailed exposition of the above work will be published elsewhere.

Part of this research was accomplished while the author held a National Research Council Senior Research Associateship supported by the National Aeronautics and Space Administration; he would also like to thank Dr. Robert Jastrow for his hospitality at the Institute for Space Studies.

References