Name: Instructor's

PHYSICS 2101 – 2
Instructor: Julian Frank
Quizz 9 - Spring 2000 - Wednesday April 26

Part I – Multiple Choice Questions (2 pts/question; total – 4 pts) Identify the correct answers by placing a check between the brackets []

1) What is the acceleration of gravity at a distance of \(R \) above the surface of the Earth? (Here \(R \) is the Earth’s radius and you may ignore any effects of rotation).

[] \(2g \).
[] \(g \).
[] \(g/2 \).
[] \(g/4 \).
[] \(g/6 \).

\[a_g = \frac{GM}{r^2} \quad r = 2R \]

2) The escape velocity from the surface of the Earth is \(v_{esc} = \sqrt{2GM/R} = 11.2 \text{ km/s} \). What minimum velocity is required to escape Earth’s gravity from a distance of \(4R \) from the Earth’s center?

[] \(22.4 \text{ km/s} \).
[] \(11.2 \text{ km/s} \).
[] \(5.6 \text{ km/s} \).
[] \(2.8 \text{ km/s} \).
[] \(1.4 \text{ km/s} \).

\[R \to 4R \quad \frac{v_{esc}}{2} \to v_{esc} \]

Part II – Problem (6 pts)

The diagram shows a hollow spherical shell of uniform mass density, having inner and outer radii \(a \) and \(b \) respectively. Suppose that the total mass of the shell is \(M \). Write down an expression for the gravitational acceleration outside \((r > b)\) and inside \((r < a)\). Sketch a graph showing qualitatively how the magnitude of the gravitational acceleration varies with \(r \), including the region of the shell itself \(a < r < b \).

\[a_g = \frac{GM}{r^2}, \text{ SHELL THEOREM} \]

\(r > b \)

\[a_g = \frac{GM}{r^2}, \text{ SHELL THEOREM} \]

\(r < a \)

\[a_g = 0, \text{ SHELL THEOREM} \]

\[\frac{GM}{b^2}, \text{ SHELL THEOREM} \]