Jonathan P. Dowling

Hearne Institute for Theoretical Physics
Department of Physics and Astronomy
Quantum Science and Technologies Group
Louisiana State University
Baton Rouge, Louisiana USA
quantum.phys.lsu.edu

PQE, 03 January 2006, Snowbird

Not Shown: MA.Can, A.Chiruvelli, GA.Durkin, M.Erickson, L.Florescu, M.Florescu, KT.Kapale, SJ.Olsen, S.Thanvantri, Z.Wu
Two Roads to C-NOT

I. Enhance Nonlinear Interaction with a Cavity or EIT — Kimble, Walther, Lukin, et al.

II. Exploit Nonlinearity of Measurement — Knill, LaFlamme, Milburn, Franson, et al.
WHY IS A KERR NONLINEARITY LIKE A PROJECTIVE MEASUREMENT?
The success probability is less than 1 (namely 1/8).

The input state is constrained to be a superposition of 0, 1, and 2 photons only.

Conditioned on a detector coincidence in D_1 and D_2.

Effective $\kappa = 1/8$ → 22 Orders of Magnitude Improvement!

$|\psi_{in}\rangle = \sum_{n=0}^{2} c_n |n\rangle |1\rangle$

P. Kok, H. Lee, and JPD, PRA 66 (2003) 063814
A Revolution in Nonlinear Optics at the Few Photon Level: No Longer Limited by the Nonlinearities We Find in Nature!

Projective Measurement Yields Effective "Kerr"!

\[Q = \frac{\pi \hbar}{2} (5 \hat{n} - \hat{n}^2) \]

KLM CSIGN Hamiltonian

\[Q = \frac{\pi \hbar}{2} (3 + a_b^\dagger (1 - \hat{n}_b) + (1 - \hat{n}_b) a_b) \hat{n}_a \]

Franson CNOT Hamiltonian
We call the state of the form $|N, \phi > + |\phi, N >$ the NOON state, and the High NOON state a large N.

\[\frac{1 + \cos \varphi}{2} \] uncorrelated

\[\frac{1 + \cos N\varphi}{2} \] correlated

$\varphi = kx$

$\Delta \varphi: \frac{1}{\sqrt{N}} \rightarrow \frac{1}{N}$
FROM QUANTUM INTERFEROMETER TO QUANTUM LITHOGRAPHY

N-Photon Absorbing Lithographic Resist

\[\langle \psi | a_+^N a^N | \psi \rangle \]

\[\begin{array}{c} \frac{1 + \cos \varphi}{2} \quad \text{uncorrelated} \\ \frac{1 + \cos N \varphi}{2} \quad \text{correlated} \end{array} \]

\[\varphi = kx \]
\[\varphi \rightarrow N \varphi \]
\[\lambda \rightarrow \lambda/N \]
Showdown at High-NOON!

How do we make NOON!?

\[|N,0\rangle + |0,N\rangle \]

With a large cross-Kerr nonlinearity!*

\[\mathcal{H} = \kappa \, a^\dagger a \: b^\dagger b \]

This is not practical! —
need \(\kappa = \pi \) but \(\kappa = 10^{-22} \)!

Projective Measurements to the Rescue

Probability of success: \(\frac{3}{64} \)

Best we found: \(\frac{3}{16} \) Not Efficient!

De Broglie wavelength of a non-local four-photon state

Philip Walther1, Jian-Wei Pan1,2, Markus Aspelmeyer1, Rupert Ursin1, Sara Gasparoni1,2 & Anton Zeilinger1,2

Super-resolving phase measurements with a multiphoton entangled state

M. W. Mitchell, J. S. Lundeen & A. M. Steinberg
What’s New with NOON States?

KT Kapale & JPD,
A Bootstrapping Approach for Generating Maximally Path-Entangled Photon States,
[quant-ph/0612196].

NM VanMeter, P Lougovski,
DB Uskov, K Kieling, J Eisert, JPD,
A General Linear-Optical Quantum State Generator,
[quant-ph/0612154].

Durkin GA, Dowling JP, Local and Global Distinguishability in Quantum Interferometry,
[quant-ph/0607088].
High-NOON Meets Phaseonium
With sufficiently high cross-Kerr nonlinearity, NOON generation possible.

Implementation via Phaseonium

\[|\psi_{1(2)}\rangle_{ab} = \frac{1}{\sqrt{2}} \left[|N\rangle_a |0\rangle_b \pm e^{i\xi N_0} |0\rangle_a |N\rangle_b \right] \]

Gerry and Campos, PRA 64 063814 (2001)
Two possible methods

• As a high-refractive index material to obtain the large phase shifts
 - Problem: Requires entangled phaseonium

• As a cross-Kerr nonlinearity
 - Problem: Does not offer required phase shifts of π as yet (experimentally)
Phaseonium for High Index of Refraction

With larger density high index of refraction can be obtained

$N = 10^{15} \text{ cm}^{-3}$ \hspace{1cm} $\text{Re}(\chi) = 100 \text{ cm}^{-3}$

$n = 10 \text{ cm}^{-3}$
The needed large phase-shift of π can be obtained via the phaseonium as a high refractive index material.

However, the control required by the Quantum Fredkin gate necessitates the atoms be in the GHZ state between level a and b Which could be possible for upto 1000 atoms.

Question: Would 1000 atoms give sufficiently high refractive index?
Cross-Kerr nonlinearities via Phaseonium have been shown to impart phase shifts of 7° controlled via single photon.

One really needs to input a smaller NOON as a control for the QFG as opposed to a single photon with $N=30$ roughly to obtain phase shift as large as π.

This suggests a bootstrapping approach.

In the presence of single signal photon, and the strong drive a weak probe field experiences a phase shift.
Implementation of QFG via Cavity QED

Ramsey Interferometry for atom initially in state b.

Dispersive coupling between the atom and cavity gives required conditional phase shift

$$|\psi_{1(2)}\rangle_{ab} = \frac{1}{\sqrt{2}} [|N\rangle_a |0\rangle_b \pm e^{i\xi N_0} |0\rangle_a |N\rangle_b]$$
Low-NOON via Entanglement
Swapping: The NOON gun

- Single photon gun of Rempe PRL 85 4872 (2000) and Fock state gun of Whaley group quant-ph/0211134 could be extended to obtain a NOON gun from atomic GHZ states.

- GHZ states of few 1000 atoms can be generated in a single step via (I) Agarwal et al. PRA 56 2249 (1997) and (II) Zheng PRL 87 230404 (2001)

- By using collective interaction of the atoms with cavity a polarization entangled state of photons could be generated inside a cavity

- Which could be out-coupled and converted to NOON via linear optics.
Bootstrapping

- Generation of NOON states with N roughly 30 with cavity QED based NOON gun.
- Use of Phaseonium to obtain cross-Kerr nonlinearity and the NOON with N=30 as a control in the Quantum Fredkin Gate to generate high NOON states.
- Strong light-atom interaction in cavity QED can also be used to directly implement Quantum Fredkin gate.